
e

Instruction Set Summary 30

This chapter lists all the instructions in the Intel Architecture instruction set, divided into three
functional groups: integer, floating-point, and system. It also briefly describes each of the integer
instructions.

Brief descriptions of the floating-point instructions are given in “Floating-Point Unit”; brief
descriptions of the system instructions are given in the Intel Architecture Software Developer’s
Manual, Volume 3.

Detailed descriptions of all the Intel Architecture instructions are given in Intel Architecture
Software Developer’s Manual, Volume 2. Included in this volume are a description of each
instruction’s encoding and operation, the effect of an instruction on the EFLAGS flags, and th
exceptions an instruction may generate.

30.1 New Intel Architecture Instructions

The following sections give the Intel Architecture instructions that were new in the MMX
Technology and in the Pentium Pro, Pentium, and Intel486 processors.

30.1.1 New Instructions Introduced with the MMX™ Technology

The Intel MMX technology introduced a new set of instructions to the Intel Architecture, designed
to enhance the performance of multimedia applications. These instructions are recognized by all
Intel Architecture processors that implement the MMX technology. The MMX instructions are
listed in “MMX™ Technology Instructions”.

30.1.2 New Instructions in the Pentium® Pro Processor

The following instructions are new in the Pentium Pro processor:

• CMOVcc—Conditional move (see “Conditional Move Instructions”).

• FCMOVcc—Floating-point conditional move on condition-code flags in EFLAGS register
(see “Data Transfer Instructions”).

• FCOMI/FCOMIP/FUCOMI/FUCOMIP—Floating-point compare and set condition-code
flags in EFLAGS register (see “Comparison and Classification Instructions”).

• RDPMC—Read performance monitoring counters (see “RDPMC—Read Performance-
Monitoring Counters” in Chapter 3 of the Intel Architecture Software Developer’s Manual,
Volume 2). (This instruction is also available in all Pentium® processors that implement the
MMX™ technology.)

• UD2—Undefined instruction (see “No-Operation and Undefined Instructions”).
Embedded Pentium® Processor Family 30-515

Instruction Set Summary
30.1.3 New Instructions in the Pentium® Processor

The following instructions are new in the Pentium processor:

• CMPXCHG8B (compare and exchange 8 bytes) instruction.

• CPUID (CPU identification) instruction. (This instruction was introduced in the Pentium®
processor and added to later versions of the Intel486™ processor.)

• RDTSC (read time-stamp counter) instruction.

• RDMSR (read model-specific register) instruction.

• WRMSR (write model-specific register) instruction.

• RSM (resume from SMM) instruction.

The form of the MOV instruction used to access the test registers has been removed on the Pentium
and future Intel Architecture processors.

30.1.4 New Instructions in the Intel486™ Processor

The following instructions are new in the Intel486 processor:

• BSWAP (byte swap) instruction.

• XADD (exchange and add) instruction.

• CMPXCHG (compare and exchange) instruction.

• ΙNVD (invalidate cache) instruction.

• WBINVD (write-back and invalidate cache) instruction.

• INVLPG (invalidate TLB entry) instruction.

30.2 Instruction Set List

This section lists all the Intel Architecture instructions divided into three major groups: integer,
MMX technology, floating-point, and system instructions. For each instruction, the mnemonic and
descriptive names are given. When two or more mnemonics are given (for example,
CMOVA/CMOVNBE), they represent different mnemonics for the same instruction opcode.
Assemblers support redundant mnemonics for some instructions to make it easier to read code
listings. For instance, CMOVA (Conditional move if above) and CMOVNBE (Conditional move is
not below or equal) represent the same condition.

30.2.1 Integer Instructions

Integer instructions perform the integer arithmetic, logic, and program flow control operations that
programmers commonly use to write application and system software to run on an Intel
Architecture processor. In the following sections, the integer instructions are divided into several
instruction subgroups.
30-516 Embedded Pentium® Processor Family

Instruction Set Summary
30.2.1.1 Data Transfer Instructions

MOV Move

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero

CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero

CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not below

CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or equal

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not above

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less

CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal

CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater

CMOVC Conditional move if carry

CMOVNC Conditional move if not carry

CMOVO Conditional move if overflow

CMOVNO Conditional move if not overflow

CMOVS Conditional move if sign (negative)

CMOVNS Conditional move if not sign (non-negative)

CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even

CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd

XCHG Exchange

BSWAP Byte swap

XADD Exchange and add

CMPXCHG Compare and exchange

CMPXCHG8B Compare and exchange 8 bytes

PUSH Push onto stack

POP Pop off of stack

PUSHA/PUSHAD Push general-purpose registers onto stack

POPA/POPAD Pop general-purpose registers from stack

IN Read from a port

OUT Write to a port

CWD/CDQ Convert word to doubleword/Convert doubleword to quadword

CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register

MOVSX Move and sign extend

MOVZX Move and zero extend
Embedded Pentium® Processor Family 30-517

Instruction Set Summary
30.2.1.2 Binary Arithmetic Instructions

30.2.1.3 Decimal Arithmetic

30.2.1.4 Logic Instructions

ADD Integer add

ADC Add with carry

SUB Subtract

SBB Subtract with borrow

IMUL Signed multiply

MUL Unsigned multiply

IDIV Signed divide

DIV Unsigned divide

INC Increment

DEC Decrement

NEG Negate

CMP Compare

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction

AAA ASCII adjust after addition

AAS ASCII adjust after subtraction

AAM ASCII adjust after multiplication

AAD ASCII adjust before division

AND And

OR Or

XOR Exclusive or

NOT Not
30-518 Embedded Pentium® Processor Family

Instruction Set Summary
30.2.1.5 Shift and Rotate Instructions

30.2.1.6 Bit and Byte Instructions

SAR Shift arithmetic right

SHR Shift logical right

SAL/SHL Shift arithmetic left/Shift logical left

SHRD Shift right double

SHLD Shift left double

ROR Rotate right

ROL Rotate left

RCR Rotate through carry right

RCL Rotate through carry left

BT Bit test

BTS Bit test and set

BTR Bit test and reset

BTC Bit test and complement

BSF Bit scan forward

BSR Bit scan reverse

SETE/SETZ Set byte if equal/Set byte if zero

SETNE/SETNZ Set byte if not equal/Set byte if not zero

SETA/SETNBE Set byte if above/Set byte if not below or equal

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry

SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte if carry

SETBE/SETNA Set byte if below or equal/Set byte if not above

SETG/SETNLE Set byte if greater/Set byte if not less or equal

SETGE/SETNL Set byte if greater or equal/Set byte if not less

SETL/SETNGE Set byte if less/Set byte if not greater or equal

SETLE/SETNG Set byte if less or equal/Set byte if not greater

SETS Set byte if sign (negative)

SETNS Set byte if not sign (non-negative)

SETO Set byte if overflow

SETNO Set byte if not overflow

SETPE/SETP Set byte if parity even/Set byte if parity

SETPO/SETNP Set byte if parity odd/Set byte if not parity

TEST Logical compare
Embedded Pentium® Processor Family 30-519

Instruction Set Summary
30.2.1.7 Control Transfer Instructions

JMP Jump

JE/JZ Jump if equal/Jump if zero

JNE/JNZ Jump if not equal/Jump if not zero

JA/JNBE Jump if above/Jump if not below or equal

JAE/JNB Jump if above or equal/Jump if not below

JB/JNAE Jump if below/Jump if not above or equal

JBE/JNA Jump if below or equal/Jump if not above

JG/JNLE Jump if greater/Jump if not less or equal

JGE/JNL Jump if greater or equal/Jump if not less

JL/JNGE Jump if less/Jump if not greater or equal

JLE/JNG Jump if less or equal/Jump if not greater

JC Jump if carry

JNC Jump if not carry

JO Jump if overflow

JNO Jump if not overflow

JS Jump if sign (negative)

JNS Jump if not sign (non-negative)

JPO/JNP Jump if parity odd/Jump if not parity

JPE/JP Jump if parity even/Jump if parity

JCXZ/JECXZ Jump register CX zero/Jump register ECX zero

LOOP Loop with ECX counter

LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal

LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal

CALL Call procedure

RET Return

IRET Return from interrupt

INT Software interrupt

INTO Interrupt on overflow

BOUND Detect value out of range

ENTER High-level procedure entry

LEAVE High-level procedure exit
30-520 Embedded Pentium® Processor Family

Instruction Set Summary
30.2.1.8 String Instructions

MOVS/MOVSB Move string/Move byte string

MOVS/MOVSW Move string/Move word string

MOVS/MOVSD Move string/Move doubleword string

CMPS/CMPSB Compare string/Compare byte string

CMPS/CMPSW Compare string/Compare word string

CMPS/CMPSD Compare string/Compare doubleword string

SCAS/SCASB Scan string/Scan byte string

SCAS/SCASW Scan string/Scan word string

SCAS/SCASD Scan string/Scan doubleword string

LODS/LODSB Load string/Load byte string

LODS/LODSW Load string/Load word string

LODS/LODSD Load string/Load doubleword string

STOS/STOSB Store string/Store byte string

STOS/STOSW Store string/Store word string

STOS/STOSD Store string/Store doubleword string

REP Repeat while ECX not zero

REPE/REPZ Repeat while equal/Repeat while zero

REPNE/REPNZ Repeat while not equal/Repeat while not zero

INS/INSB Input string from port/Input byte string from port

INS/INSW Input string from port/Input word string from port

INS/INSD Input string from port/Input doubleword string from port

OUTS/OUTSB Output string to port/Output byte string to port

OUTS/OUTSW Output string to port/Output word string to port

OUTS/OUTSD Output string to port/Output doubleword string to port
Embedded Pentium® Processor Family 30-521

Instruction Set Summary
30.2.1.9 Flag Control Instructions

30.2.1.10 Segment Register Instructions

30.2.1.11 Miscellaneous Instructions

30.2.2 MMX™ Technology Instructions

The MMX instructions execute on those Intel Architecture processors that implement the Intel
MMX technology. These instructions operate on packed-byte, packed-word, packed-doubleword,
and quadword operands. As with the integer instructions, the following list of MMX instructions is
divided into subgroups.

STC Set carry flag

CLC Clear the carry flag

CMC Complement the carry flag

CLD Clear the direction flag

STD Set direction flag

LAHF Load flags into AH register

SAHF Store AH register into flags

PUSHF/PUSHFD Push EFLAGS onto stack

POPF/POPFD Pop EFLAGS from stack

STI Set interrupt flag

CLI Clear the interrupt flag

LDS Load far pointer using DS

LES Load far pointer using ES

LFS Load far pointer using FS

LGS Load far pointer using GS

LSS Load far pointer using SS

LEA Load effective address

NOP No operation

UB2 Undefined instruction

XLAT/XLATB Table lookup translation

CPUID Processor Identification
30-522 Embedded Pentium® Processor Family

Instruction Set Summary
30.2.2.1 MMX™ Data Transfer Instructions

30.2.2.2 MMX™ Conversion Instructions

30.2.2.3 MMX™ Packed Arithmetic Instructions

MOVD Move doubleword

MOVQ Move quadword

PACKSSWB Pack words into bytes with signed saturation

PACKSSDW Pack doublewords into words with signed saturation

PACKUSWB Pack words into bytes with unsigned saturation

PUNPCKHBW Unpack high-order bytes from words

PUNPCKHWD Unpack high-order words from doublewords

PUNPCKHDQ Unpack high-order doublewords from quadword

PUNPCKLBW Unpack low-order bytes from words

PUNPCKLWD Unpack low-order words from doublewords

PUNPCKLDQ Unpack low-order doublewords from quadword

PADDB Add packed bytes

PADDW Add packed words

PADDD Add packed doublewords

PADDSB Add packed bytes with saturation

PADDSW Add packed words with saturation

PADDUSB Add packed unsigned bytes with saturation

PADDUSW Add packed unsigned words with saturation

PSUBB Subtract packed bytes

PSUBW Subtract packed words

PSUBD Subtract packed doublewords

PSUBSB Subtract packed bytes with saturation

PSUBSW Subtract packed words with saturation

PSUBUSB Subtract packed unsigned bytes with saturation

PSUBUSW Subtract packed unsigned words with saturation

PMULHW Multiply packed words and store high result

PMULLW Multiply packed words and store low result

PMADDWD Multiply and add packed words
Embedded Pentium® Processor Family 30-523

Instruction Set Summary

nit
d
30.2.2.4 MMX™ Comparison Instructions

30.2.2.5 MMX™ Logic Instructions

30.2.2.6 MMX™ Shift and Rotate Instructions

30.2.2.7 MMX™ State Management

30.2.3 Floating-Point Instructions

The floating-point instructions are those that are executed by the processor’s floating-point u
(FPU). These instructions operate on floating-point (real), extended integer, and binary-code
decimal (BCD) operands. As with the integer instructions, the following list of floating-point
instructions is divided into subgroups.

PCMPEQB Compare packed bytes for equal

PCMPEQW Compare packed words for equal

PCMPEQD Compare packed doublewords for equal

PCMPGTB Compare packed bytes for greater than

PCMPGTW Compare packed words for greater than

PCMPGTD Compare packed doublewords for greater than

PAND Bitwise logical and

PANDN Bitwise logical and not

POR Bitwise logical or

PXOR Bitwise logical exclusive or

PSLLW Shift packed words left logical

PSLLD Shift packed doublewords left logical

PSLLQ Shift packed quadword left logical

PSRLW Shift packed words right logical

PSRLD Shift packed doublewords right logical

PSRLQ Shift packed quadword right logical

PSRAW Shift packed words right arithmetic

PSRAD Shift packed doublewords right arithmetic

EMMS Empty MMX state
30-524 Embedded Pentium® Processor Family

Instruction Set Summary
30.2.3.1 Data Transfer

30.2.3.2 Basic Arithmetic

FLD Load real

FST Store real

FSTP Store real and pop

FILD Load integer

FIST Store integer

FISTP Store integer and pop

FBLD Load BCD

FBSTP Store BCD and pop

FXCH Exchange registers

FCMOVE Floating-point conditional move if equal

FCMOVNE Floating-point conditional move if not equal

FCMOVB Floating-point conditional move if below

FCMOVBE Floating-point conditional move if below or equal

FCMOVNB Floating-point conditional move if not below

FCMOVNBE Floating-point conditional move if not below or equal

FCMOVU Floating-point conditional move if unordered

FCMOVNU Floating-point conditional move if not unordered

FADD Add real

FADDP Add real and pop

FIADD Add integer

FSUB Subtract real

FSUBP Subtract real and pop

FISUB Subtract integer

FSUBR Subtract real reverse

FSUBRP Subtract real reverse and pop

FISUBR Subtract integer reverse

FMUL Multiply real

FMULP Multiply real and pop

FIMUL Multiply integer

FDIV Divide real

FDIVP Divide real and pop

FIDIV Divide integer

FDIVR Divide real reverse

FDIVRP Divide real reverse and pop

FIDIVR Divide integer reverse

FPREM Partial remainder
Embedded Pentium® Processor Family 30-525

Instruction Set Summary
30.2.3.3 Comparison

30.2.3.4 Transcendental

FPREMI IEEE Partial remainder

FABS Absolute value

FCHS Change sign

FRNDINT Round to integer

FSCALE Scale by power of two

FSQRT Square root

FXTRACT Extract exponent and significand

FCOM Compare real

FCOMP Compare real and pop

FCOMPP Compare real and pop twice

FUCOM Unordered compare real

FUCOMP Unordered compare real and pop

FUCOMPP Unordered compare real and pop twice

FICOM Compare integer

FICOMP Compare integer and pop

FCOMI Compare real and set EFLAGS

FUCOMI Unordered compare real and set EFLAGS

FCOMIP Compare real, set EFLAGS, and pop

FUCOMIP Unordered compare real, set EFLAGS, and pop

FTST Test real

FXAM Examine real

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2x − 1

FYL2X y∗log2x

FYL2XP1 y∗log2(x+1)
30-526 Embedded Pentium® Processor Family

Instruction Set Summary
30.2.3.5 Load Constants

30.2.3.6 FPU Control

FLD1 Load +1.0

FLDZ Load +0.0

FLDPI Load π

FLDL2E Load log2e

FLDLN2 Load loge2

FLDL2T Load log210

FLDLG2 Load log102

FINCSTP Increment FPU register stack pointer

FDECSTP Decrement FPU register stack pointer

FFREE Free floating-point register

FINIT Initialize FPU after checking error conditions

FNINIT Initialize FPU without checking error conditions

FCLEX Clear floating-point exception flags after checking for error conditions

FNCLEX Clear floating-point exception flags without checking for error conditions

FSTCW Store FPU control word after checking error conditions

FNSTCW Store FPU control word without checking error conditions

FLDCW Load FPU control word

FSTENV Store FPU environment after checking error conditions

FNSTENV Store FPU environment without checking error conditions

FLDENV Load FPU environment

FSAVE Save FPU state after checking error conditions

FNSAVE Save FPU state without checking error conditions

FRSTOR Restore FPU state

FSTSW Store FPU status word after checking error conditions

FNSTSW Store FPU status word without checking error conditions

WAIT/FWAIT Wait for FPU

FNOP FPU no operation
Embedded Pentium® Processor Family 30-527

Instruction Set Summary

 into
30.2.4 System Instructions

The following system instructions are used to control those functions of the processor that are
provided to support for operating systems and executives.

30.3 Data Movement Instructions

The data movement instructions move bytes, words, doublewords, or quadwords both between
memory and the processor’s registers and between registers. These instructions are divided
four groups:

• General-purpose data movement.

• Exchange.

LGDT Load global descriptor table (GDT) register

SGDT Store global descriptor table (GDT) register

LLDT Load local descriptor table (LDT) register

SLDT Store local descriptor table (LDT) register

LTR Load task register

STR Store task register

LIDT Load interrupt descriptor table (IDT) register

SIDT Store interrupt descriptor table (IDT) register

MOV Load and store control registers

LMSW Load machine status word

SMSW Store machine status word

CLTS Clear the task-switched flag

ARPL Adjust requested privilege level

LAR Load access rights

LSL Load segment limit

VERR Verify segment for reading

VERW Verify segment for writing

MOV Load and store debug registers

INVD Invalidate cache, no writeback

WBINVD Invalidate cache, with writeback

INVLPG Invalidate TLB Entry

LOCK (prefix) Lock Bus

HLT Halt processor

RSM Return from system management mode (SSM)

RDMSR Read model-specific register

WRMSR Write model-specific register

RDPMC Read performance monitoring counters

RDTSC Read time stamp counter
30-528 Embedded Pentium® Processor Family

Instruction Set Summary

sfers
—

in the
tion).
ose

on
• Stack manipulation.

• Type-conversion.

30.3.1 General-Purpose Data Movement Instructions

The MOV (move) and CMOVcc (conditional move) instructions transfer data between memory
and registers or between registers.

30.3.1.1 Move Instruction

The MOV instruction performs basic load data and store data operations between memory and the
processor’s registers and data movement operations between registers. It handles data tran
along the paths listed in Table 30-1. (See “MOV—Move to/from Control Registers” and “MOV
Move to/from Debug Registers” in Chapter 3 of the Intel Architecture Software Developer’s
Manual, Volume 2, for information on moving data to and from the control and debug registers.)

The MOV instruction cannot move data from one memory location to another or from one segment
register to another segment register. Memory-to-memory moves can be performed with the MOVS
(string move) instruction (see “String Operations”).

30.3.1.2 Conditional Move Instructions

The CMOVcc instructions are a group of instructions that check the state of the status flags
EFLAGS register and perform a move operation if the flags are in a specified state (or condi
These instructions can be used to move a 16- or 32-bit value from memory to a general-purp
register or from one general-purpose register to another. The flag state being tested for each
instruction is specified with a condition code (cc) that is associated with the instruction. If the
condition is not satisfied, a move is not performed and execution continues with the instructi
following the CMOVcc instruction.

Table 30-1. Move Instruction Operations

Type of Data Movement Source → Destination

From memory to a register
Memory location → General-purpose register

Memory location → Segment register

From a register to memory
General-purpose register → Memory location

Segment register → Memory location

Between registers

General-purpose register → General-purpose register

General-purpose register → Segment register

Segment register → General-purpose register

General-purpose register → Control register

Control register → General-purpose register

General-purpose register → Debug register

Debug register → General-purpose register

Immediate data to a register Immediate → General-purpose register

Immediate data to memory Immediate → Memory location
Embedded Pentium® Processor Family 30-529

Instruction Set Summary

 the

by the

 family.
ature

 thus
See

 and
e
Table 30-4 shows the mnemonics for the CMOVcc instructions and the conditions being tested for
each instruction. The condition code mnemonics are appended to the letters “CMOV” to form
mnemonics for the CMOVcc instructions. The instructions listed in Table 30-4 as pairs (for
example, CMOVA/CMOVNBE) are alternate names for the same instruction. The assembler
provides these alternate names to make it easier to read program listings.

The CMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for IF statements and the possibility of branch mispredictions
processor.

These instructions may not be supported on some processors in the Pentium Pro processor
Software can check if the CMOVcc instructions are supported by checking the processor’s fe
information with the CPUID instruction (see “CPUID—CPU Identification” in Chapter 3 of the
Intel Architecture Software Developer’s Manual, Volume 2).

30.3.1.3 Exchange Instructions

The exchange instructions swap the contents of one or more operands and, in some cases, performs
additional operations such as asserting the LOCK signal or modifying flags in the EFLAGS
register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes the
place of three MOV instructions and does not require a temporary location to save the contents of
one operand location while the other is being loaded. When a memory operand is used with the
XCHG instruction, the processor’s LOCK signal is automatically asserted. This instruction is
useful for implementing semaphores or similar data structures for process synchronization. (
“Bus Locking” in Chapter 7 of the Intel Architecture Software Developer’s Manual, Volume 3, for
more information on bus locking.)

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit
positions 0 through 7 are exchanged with 24 through 31, and bit positions 8 through 15 are
exchanged with 16 through 23. Executing this instruction twice in a row leaves the register with the
same value as before. The BSWAP instruction is useful for converting between “big-endian”
“little-endian” data formats. This instruction also speeds execution of decimal arithmetic. (Th
XCHG instruction can be used two swap the bytes in a word.)

Table 30-2. Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

 CMOVA/CMOVNBE (CF or ZF)=0 Above/not below or equal

 CMOVAE/CMOVNB CF=0 Above or equal/not below

 CMOVNC CF=0 Not carry

 CMOVB/CMOVNAE CF=1 Below/not above or equal

 CMOVC CF=1 Carry

 CMOVBE/CMOVNA (CF or ZF)=1 Below or equal/not above

 CMOVE/CMOVZ ZF=1 Equal/zero

 CMOVNE/CMOVNZ ZF=0 Not equal/not zero

 CMOVP/CMOVPE PF=1 Parity/parity even

 CMOVNP/CMOVPO PF=0 Not parity/parity odd
30-530 Embedded Pentium® Processor Family

Instruction Set Summary

e
The XADD (exchange and add) instruction swaps two operands and then stores the sum of the two
operands in the destination operand. The status flags in the EFLAGS register indicate the result of
the addition. This instruction can be combined with the LOCK prefix (see “LOCK—Assert
LOCK# Signal Prefix” in Chapter 3 of the Intel Architecture Software Developer’s Manual, Volum
2) in a multiprocessing system to allow multiple processors to execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 8 bytes)
instructions are used to synchronize operations in systems that use multiple processors. The
CMPXCHG instruction requires three operands: a source operand in a register, another source
operand in the EAX register, and a destination operand. If the values contained in the destination
operand and the EAX register are equal, the destination operand is replaced with the value of the
other source operand (the value not in the EAX register). Otherwise, the original value of the
destination operand is loaded in the EAX register. The status flags in the EFLAGS register reflect
the result that would have been obtained by subtracting the destination operand from the value in
the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks to
see if a semaphore is free. If the semaphore is free it is marked allocated, otherwise it gets the ID of
the current owner. This is all done in one uninterruptible operation. In a single-processor system,
the CMPXCHG instruction eliminates the need to switch to protection level 0 (to disable
interrupts) before executing multiple instructions to test and modify a semaphore. For multiple
processor systems, CMPXCHG can be combined with the LOCK prefix to perform the compare
and exchange operation atomically. (See “Locked Atomic Operations” in Chapter 7 of the Intel
Architecture Software Developer’s Manual, Volume 3, for more information on atomic operations.)

The CMPXCHG8B instruction also requires three operands: a 64-bit value in EDX:EAX, a 64-bit
value in ECX:EBX, and a destination operand in memory. The instruction compares the 64-bit
value in the EDX:EAX registers with the destination operand. If they are equal, the 64-bit value in
the ECX:EBX register is stored in the destination operand. If the EDX:EAX register and the
destination are not equal, the destination is loaded in the EDX:EAX register. The CMPXCHG8B
instruction can be combined with the LOCK prefix to perform the operation atomically.

30.3.2 Stack Manipulation Instructions

The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions move data
to and from the stack. The PUSH instruction decrements the stack pointer (contained in the ESP
register), then copies the source operand to the top of stack (see Figure 30-1). It operates on

Signed Conditional Moves

 CMOVGE/CMOVNL (SF xor OF)=0 Greater or equal/not less

 CMOVL/CMOVNGE (SF xor OF)=1 Less/not greater or equal

 CMOVLE/CMOVNG ((SF xor OF) or ZF)=1 Less or equal/not greater

 CMOVO OF=1 Overflow

 CMOVNO OF=0 Not overflow

 CMOVS SF=1 Sign (negative)

 CMOVNS SF=0 Not sign (non-negative)

Table 30-2. Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description
Embedded Pentium® Processor Family 30-531

Instruction Set Summary
memory operands, immediate operands, and register operands (including segment registers). The
PUSH instruction is commonly used to place parameters on the stack before calling a procedure. It
can also be used to reserve space on the stack for temporary variables.

The PUSHA instruction saves the contents of the eight general-purpose registers on the stack (see
Figure 30-2). This instruction simplifies procedure calls by reducing the number of instructions
required to save the contents of the general-purpose registers. The registers are pushed on the stack
in the following order: EAX, ECX, EDX, EBX, the initial value of ESP before EAX was pushed,
EBP, ESI, and EDI.

The POP instruction copies the word or doubleword at the current top of stack (indicated by the
ESP register) to the location specified with the destination operand, and then increments the ESP
register to point to the new top of stack (see Figure 30-3). The destination operand may specify a
general-purpose register, a segment register, or a memory location.

Figure 30-1. Operation of the PUSH Instruction

0
Stack

31

Before Pushing Doubleword

Growth

ESP
n − 4

n − 8

n

Stack

031

After Pushing Doubleword

ESPDoubleword Value

Figure 30-2. Operation of the PUSHA Instruction

0Stack 31
Before Pushing Registers

Growth

ESPn - 4
n - 8

n

Stack

031
After Pushing Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Old ESP

ESI

n - 36

n - 20

n - 28

n - 12

n - 16

n - 24

n - 32

Figure 30-3. Operation of the POP Instruction

031
Stack

After Popping Doubleword

Growth

ESPn - 4
n - 8

n

Stack

Before Popping Doubleword

ESPDoubleword Value

031
30-532 Embedded Pentium® Processor Family

Instruction Set Summary
The POPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words or
doublewords from the top of the stack into the general-purpose registers, except for the ESP
register (see Figure 30-4). If the operand-size attribute is 32, the doublewords on the stack are
transferred to the registers in the following order: EDI, ESI, EBP, ignore doubleword, EBX, EDX,
ECX, and EAX. The ESP register is restored by the action of popping the stack. If the operand-size
attribute is 16, the words on the stack are transferred to the registers in the following order: DI, SI,
BP, ignore word, BX, DX, CX, and AX.

30.3.2.1 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into quadwords. These instructions are especially useful for converting integers to
larger integer formats, because they perform sign extension (see Figure 30-5).

Two kinds of type conversion instructions are provided: simple conversion and move and convert.

30.3.2.2 Simple Conversion

The CBW (convert byte to word), CWDE (convert word to doubleword extended), CWD (convert
word to doubleword), and CDQ (convert doubleword to quadword) instructions perform sign
extension to double the size of the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position of
the upper byte of the AX register. The CWDE instruction copies the sign (bit 15) of the word in the
AX register into every bit position of the high word of the EAX register.

Figure 30-4. Operation of the POPA Instruction

Stack

After Popping Registers

Growth

ESPn - 4
n - 8

n

Stack
Before Popping Registers

ESP

EAX

EDI

EBX

EBP

ECX
EDX

Ignored

ESI
n - 36

n - 20

n - 28

n - 12
n - 16

n - 24

n - 32

0 310 31

Figure 30-5. Sign Extension

31
After Sign

15 0

S N N N N N N N N N NN N N N NSSSSSSSSSSSS SSSS
Extension

Before Sign
15 0

S N N N N N N N N N NN N N N N
Extension
Embedded Pentium® Processor Family 30-533

Instruction Set Summary
The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit position
in the DX register. The CDQ instruction copies the sign (bit 31) of the doubleword in the EAX
register into every bit position in the EDX register. The CWD instruction can be used to produce a
doubleword dividend from a word before a word division, and the CDQ instruction can be used to
produce a quadword dividend from a doubleword before doubleword division.

30.3.2.3 Move and Convert

The MOVSX (move with sign extension) and MOVZX (move with zero extension) instructions
move the source operand into a register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit
value by sign extending the source operand, as shown in Figure 30-5. The MOVZX instruction
extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit value by zero extending
the source operand.

30.4 Binary Arithmetic Instructions

The binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed or
unsigned binary integers. Operations include the add, subtract, multiply, and divide as well as
increment, decrement, compare, and change sign (negate). The binary arithmetic instructions may
also be used in algorithms that operate on decimal (BCD) values.

30.4.1 Addition and Subtraction Instructions

The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and SBB
(subtract integers with borrow) instructions perform addition and subtraction operations on signed
or unsigned integer operands.

The ADD instruction computes the sum of two integer operands.

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This
instruction is used to propagate a carry when adding numbers in stages.

The SUB instruction computes the difference of two integer operands.

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is set.
This instruction is used to propagate a borrow when subtracting numbers in stages.

30.4.2 Increment and Decrement Instructions

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned
integer operand, respectively. A primary use of these instructions is for implementing counters.
30-534 Embedded Pentium® Processor Family

Instruction Set Summary

tions:

AA
n the
igit,

ion.
30.4.3 Comparison and Sign Change Instruction

The CMP (compare) instruction computes the difference between two integer operands and
updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The source operands are not
modified, nor is the result saved. The CMP instruction is commonly used in conjunction with a Jcc
(jump) or SETcc (byte set on condition) instruction, with the latter instructions performing an
action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the NEG
instruction is to change the sign of a two’s complement operand while keeping its magnitude.

30.4.4 Multiplication and Divide Instructions

The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL signed
multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice the
size of the source operands (for example, if word operands are being multiplied, the result is a
doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice the
size of the source operands; however, in some cases the result is truncated to the size of the source
operands (see “IMUL—Signed Multiply” in Chapter 3 of the Intel Architecture Software
Developer’s Manual, Volume 2).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a
quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a signed
division.

30.5 Decimal Arithmetic Instructions

Decimal arithmetic can be performed by combining the binary arithmetic instructions ADD, SUB,
MUL, and DIV (discussed in “Binary Arithmetic Instructions”) with the decimal arithmetic
instructions. The decimal arithmetic instructions are provided to carry out the following opera

• To adjust the results of a previous binary arithmetic operation to produce a valid BCD result.

• To adjust the operands of a subsequent binary arithmetic operation so that the operation will
produce a valid BCD result.

These instructions operate only on both packed and unpacked BCD values.

30.5.1 Packed BCD Adjustment Instructions

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions
adjust the results of operations performed on packed BCD integers (see “BCD Integers”).
Adding two packed BCD values requires two instructions: an ADD instruction followed by a D
instruction. The ADD instruction adds (binary addition) the two values and stores the result i
AL register. The DAA instruction then adjusts the value in the AL register to obtain a valid, 2-d
packed BCD value and sets the CF flag if a decimal carry occurred as the result of the addit
Embedded Pentium® Processor Family 30-535

Instruction Set Summary

ce, the

d
 the
 result

. If a
the AH

d
 the

DIV
 in
res
tient

an
nds;

 into
Likewise, subtracting one packed BCD value from another requires a SUB instruction followed by
a DAS instruction. The SUB instruction subtracts (binary subtraction) one BCD value from another
and stores the result in the AL register. The DAS instruction then adjusts the value in the AL
register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal borrow
occurred as the result of the subtraction.

30.5.2 Unpacked BCD Adjustment Instructions

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII
adjust after multiplication), and AAD (ASCII adjust before division) instructions adjust the results
of arithmetic operations performed in unpacked BCD values (see “BCD Integers”). All these
instructions assume that the value to be adjusted is stored in the AL register or, in one instan
AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value an
stores the result in the AL register in unpacked BCD format (the decimal number is stored in
lower 4 bits of the register and the upper 4 bits are cleared). If a decimal carry occurred as a
of the addition, the CF flag is set and the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction of two
unpacked BCD values. Here again, a binary value is converted into an unpacked BCD value
borrow was required to complete the decimal subtract, the CF flag is set and the contents of
register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value an
stores the least significant digit of the result in the AL register (in unpacked BCD format) and
most significant digit, if there is one, in the AH register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the
instruction, a valid unpacked BCD result is obtained. The instruction converts the BCD value
registers AH (most significant digit) and AL (least significant digit) into a binary value and sto
the result in register AL. When the value in AL is divided by an unpacked BCD value, the quo
and remainder will be automatically encoded in unpacked BCD format.

30.6 Logical Instructions

The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard Boole
operations for which they are named. The AND, OR, and XOR instructions require two opera
the NOT instruction operates on a single operand.

30.7 Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand. These instructions fall
the following classes:

• Shift.

• Double shift.
30-536 Embedded Pentium® Processor Family

Instruction Set Summary
• Rotate.

30.7.1 Shift Instructions

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift
logical right) instructions perform an arithmetic or logical shift of the bits in a byte, word, or
doubleword.

The SAL and SHL instructions perform the same operation (see Figure 30-6). They shift the source
operand left by from 1 to 31 bit positions. Empty bit positions are cleared. The CF flag is loaded
with the last bit shifted out of the operand.

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 30-7).
As with the SHL/SAL instruction, the empty bit positions are cleared and the CF flag is loaded
with the last bit shifted out of the operand.

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 30-8).
This instruction differs from the SHR instruction in that it preserves the sign of the source operand
by clearing empty bit positions if the operand is positive or setting the empty bits if the operand is
negative. Again, the CF flag is loaded with the last bit shifted out of the operand.

Figure 30-6. SHL/SAL Instruction Operation

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1X

Initial State

CF

0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 01

After 1-bit SHL/SAL Instruction

0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 00

After 10-bit SHL/SAL Instruction

Operand

Figure 30-7. SHR Instruction Operation

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 X

Initial State CF

0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1

After 1-bit SHR Instruction

0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

After 10-bit SHR Instruction

Operand
Embedded Pentium® Processor Family 30-537

Instruction Set Summary
The SAR and SHR instructions can also be used to perform division by powers of 2 (see
“SAL/SAR/SHL/SHR—Shift Instructions” in Chapter 3 of the Intel Architecture Software
Developer’s Manual, Volume 2).

30.7.2 Double-Shift Instructions

The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified number
of bits from one operand to another (see Figure 30-9). They are provided to facilitate operations on
unaligned bit strings. They can also be used to implement a variety of bit string move operations.

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit
positions (in the destination operand) with bits shifted out of the source operand. The destination
and source operands must be the same length (either words or doublewords). The shift count can

Figure 30-8. SAR Instruction Operation

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Positive Operand) CF

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

Initial State (Negative Operand)

Operand

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

After 1-bit SAR Instruction

CF

Figure 30-9. SHLD and SHRD Instruction Operations

Destination (Memory or Register)CF

31 0

Source (Register)

31 0

Destination (Memory or Register) CF

31 0

Source (Register)

31 0

SHRD Instruction

SHLD Instruction
30-538 Embedded Pentium® Processor Family

Instruction Set Summary
range from 0 to 31 bits. The result of this shift operation is stored in the destination operand, and
the source operand is not modified. The CF flag is loaded with the last bit shifted out of the
destination operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the left
in the destination operand, with the empty bit positions filled with bits shifted out of the source
operand.

30.7.3 Rotate Instructions

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate through
carry right) instructions rotate the bits in the destination operand out of one end and back through
the other end (see Figure 30-10). Unlike a shift, no bits are lost during a rotation. The rotate count
can range from 0 to 31.

The ROL instruction rotates the bits in the operand to the left (toward more significant bit
locations). The ROR instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag). This instruction
treats the CF flag as a one-bit extension on the upper end of the operand. Each bit which exits from
the most significant bit location of the operand moves into the CF flag. At the same time, the bit in
the CF flag enters the least significant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of the
operand, even if the instruction does not use the CF flag as an extension of the operand. The value
of this flag can then be tested by a conditional jump instruction (JC or JNC).

Figure 30-10. ROL, ROR, RCL, and RCR Instruction Operations

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

031

Destination (Memory or Register)CF

31 0

Destination (Memory or Register) CF

31 0

ROL Instruction

RCL Instruction

RCR Instruction

ROR Instruction
Embedded Pentium® Processor Family 30-539

Instruction Set Summary
30.8 Bit And Byte Instructions

The bit and byte instructions operate on bit or byte strings. They are divided into four groups:

• Bit test and modify instructions.

• Bit scan instructions.

• Byte set on condition.

• Test.

30.8.1 Bit Test and Modify Instructions

The bit test and modify instructions (see Table 30-3) operate on a single bit, which can be in an
operand. The location of the bit is specified as an offset from the least significant bit of the
operand. When the processor identifies the bit to be tested and modified, it first loads the CF flag
with the current value of the bit. Then it assigns a new value to the selected bit, as determined by
the modify operation for the instruction.

30.8.2 Bit Scan Instructions

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source
operand for a set bit and store the bit index of the first set bit found in a destination register. The bit
index is the offset from the least significant bit (bit 0) in the bit string to the first set bit. The BSF
instruction scans the source operand low-to-high (from bit 0 of the source operand toward the most
significant bit); the BSR instruction scans high-to-low (from the most significant bit toward the
least significant bit).

30.8.3 Byte Set On Condition Instructions

The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 1, depending
on the state of selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register. The suffix
(cc) added to the SET mnemonic determines the condition being tested for. For example, the SETO
instruction tests for overflow. If the OF flag is set, the destination byte is set to 1; if OF is clear, the
destination byte is cleared to 0. “EFLAGS Condition Codes” lists the conditions it is possible to
test for with this instruction.

Table 30-3. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and Complement) CF flag ← Selected Bit Selected Bit ← NOT (Selected Bit)
30-540 Embedded Pentium® Processor Family

Instruction Set Summary
30.8.4 Test Instruction

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags
according to the results. The flags can then be tested by the conditional jump or loop instructions or
the SETcc instructions. The TEST instruction differs from the AND instruction in that it does not
alter either of the operands.

30.9 Control Transfer Instructions

The processor provides both conditional and unconditional control transfer instructions to direct
the flow of program execution. Conditional transfers are taken only for specified states of the status
flags in the EFLAGS register. Unconditional control transfers are always executed.

30.9.1 Unconditional Transfer Instructions

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location
(destination address) in the instruction stream. The destination can be within the same code
segment (near transfer) or in a different code segment (far transfer).

30.9.1.1 Jump Instruction

The JMP (jump) instruction unconditionally transfers program control to a destination instruction.
The transfer is one-way; that is, a return address is not saved. A destination operand specifies the
address (the instruction pointer) of the destination instruction. The address can be a relative
address or an absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The
destination address (a near pointer) is formed by adding the displacement to the address in the EIP
register. The displacement is specified with a signed integer, allowing jumps either forward or
backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in either of the
following ways:

• An address in a general-purpose register. This address is treated as a near pointer, which is
copied into the EIP register. Program execution then continues at the new address within the
current code segment.

• An address specified using the standard addressing modes of the processor. Here, the
address can be a near pointer or a far pointer. If the address is for a near pointer, the address is
translated into an offset and copied into the EIP register. If the address is for a far pointer, the
address is translated into a segment selector (which is copied into the CS register) and an offset
(which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-state
segment.

30.9.1.2 Call and Return Instructions

The CALL (call procedure) and RET (return from procedure) instructions allow a jump from one
procedure (or subroutine) to another and a subsequent jump back (return) to the calling procedure.
Embedded Pentium® Processor Family 30-541

Instruction Set Summary

n

the
trol is

 the

ing

rupt
rrupt
l and
ntents
n

r
atus

the
e
 the
is not
The CALL instruction transfers program control from the current (or calling procedure) to another
procedure (the called procedure). To allow a subsequent return to the calling procedure, the CALL
instruction saves the current contents of the EIP register on the stack before jumping to the called
procedure. The EIP register (prior to transferring program control) contains the address of the
instruction following the CALL instruction. When this address is pushed on the stack, it is referred
to as the return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the procedure being
jumped to) is specified in a CALL instruction the same way as it is in a JMP instruction (see “Jump
Instruction”). The address can be specified as a relative address or an absolute address. If a
absolute address is specified, it can be either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (
called procedure) back to the procedure that called it (the calling procedure). Transfer of con
accomplished by copying the return instruction pointer from the stack into the EIP register.
Program execution then continues with the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of
ESP register as part of the return operation. This operand allows the stack pointer to be
incremented to remove parameters from the stack that were pushed on the stack by the call
procedure.

See “Calling Procedures Using CALL and RET”, for more information on the mechanics of
making procedure calls with the CALL and RET instructions.

30.9.1.3 Return From Interrupt Instruction

When the processor services an interrupt, it performs an implicit call to an interrupt-handling
procedure. The IRET (return from interrupt) instruction returns program control from an inter
handler to the interrupted procedure (that is, the procedure that was executing when the inte
occurred). The IRET instruction performs a similar operation to the RET instruction (see “Cal
Return Instructions”) except that it also restores the EFLAGS register from the stack. The co
of the EFLAGS register are automatically stored on the stack along with the return instructio
pointer when the processor services an interrupt.

30.9.2 Conditional Transfer Instructions

The conditional transfer instructions execute jumps or loops that transfer program control to
another instruction in the instruction stream if specified conditions are met. The conditions fo
control transfer are specified with a set of condition codes that define various states of the st
flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

30.9.2.1 Conditional Jump Instructions

The Jcc (conditional) jump instructions transfer program control to a destination instruction if
conditions specified with the condition code (cc) associated with the instruction are satisfied (se
Table 30-4). If the condition is not satisfied, execution continues with the instruction following
Jcc instruction. As with the JMP instruction, the transfer is one-way; that is, a return address
saved.
30-542 Embedded Pentium® Processor Family

Instruction Set Summary

ic for
al
ned
e
asier to

e or
ns.
The destination operand specifies a relative address (a signed offset with respect to the address in
the EIP register) that points to an instruction in the current code segment. The Jcc instructions do
not support far transfers; however, far transfers can be accomplished with a combination of a Jcc
and a JMP instruction (see “Jcc—Jump if Condition Is Met” in Chapter 3 of the Intel Architecture
Software Developer’s Manual, Volume 2).

Table 30-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each
instruction. The condition code mnemonics are appended to the letter “J” to form the mnemon
a Jcc instruction. The instructions are divided into two groups: unsigned and signed condition
jumps. These groups correspond to the results of operations performed on unsigned and sig
integers, respectively. Those instructions listed as pairs (for example, JA/JNBE) are alternat
names for the same instruction. The assembler provides these alternate names to make it e
read program listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of on
more status flags. See “Jump If Zero Instructions” for more information about these instructio

Table 30-4. Conditional Jump Instructions

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

 JA/JNBE (CF or ZF)=0 Above/not below or equal

 JAE/JNB CF=0 Above or equal/not below

 JB/JNAE CF=1 Below/not above or equal

 JBE/JNA (CF or ZF)=1 Below or equal/not above

 JC CF=1 Carry

 JE/JZ ZF=1 Equal/zero

 JNC CF=0 Not carry

 JNE/JNZ ZF=0 Not equal/not zero

 JNP/JPO PF=0 Not parity/parity odd

 JP/JPE PF=1 Parity/parity even

 JCXZ CX=0 Register CX is zero

 JECXZ ECX=0 Register ECX is zero

Signed Conditional Jumps

 JG/JNLE ((SF xor OF) or ZF) =0 Greater/not less or equal

 JGE/JNL (SF xor OF)=0 Greater or equal/not less

 JL/JNGE (SF xor OF)=1 Less/not greater or equal

 JLE/JNG ((SF xor OF) or ZF)=1 Less or equal/not greater

 JNO OF=0 Not overflow

 JNS SF=0 Not sign (non-negative)

 JO OF=1 Overflow

 JS SF=1 Sign (negative)
Embedded Pentium® Processor Family 30-543

Instruction Set Summary

e

o be
ning

y
 can
 or

 the

f
h in
30.9.2.2 Loop Instructions

The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero), LOOPNE (loop while not
equal), and LOOPNZ (loop while not zero) instructions are conditional jump instructions that use
the value of the ECX register as a count for the number of times to execute a loop. All the loop
instructions decrement the count in the ECX register each time they are executed and terminate a
loop when zero is reached. The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions also
accept the ZF flag as a condition for terminating the loop before the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the
address-size attribute is 16), then tests the register for the loop-termination condition. If the count
in the ECX register is non-zero, program control is transferred to the instruction address specified
by the destination operand. The destination operand is a relative address (that is, an offset relative
to the contents of the EIP register), and it generally points to the first instruction in the block of
code that is to be executed in the loop. When the count in the ECX register reaches zero, program
control is transferred to the instruction immediately following the LOOP instruction, which
terminates the loop. If the count in the ECX register is zero when the LOOP instruction is first
executed, the register is pre-decremented to FFFFFFFFH, causing the loop to be executed 232
times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the
same instruction). These instructions operate the same as the LOOP instruction, except that they
also test the ZF flag. If the count in the ECX register is not zero and the ZF flag is set, program
control is transferred to the destination operand. When the count reaches zero or the ZF flag is
clear, the loop is terminated by transferring program control to the instruction immediately
following the LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the same
as the LOOPE/LOOPPZ instructions, except that they terminate the loop if the ZF flag is set.

30.9.2.3 Jump If Zero Instructions

The JECXZ (jump if ECX zero) instruction jumps to the location specified in the destination
operand if the ECX register contains the value zero. This instruction can be used in combination
with a loop instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register
prior to beginning a loop. As described in “Loop Instructions”, the loop instructions decrement th
contents of the ECX register before testing for zero. If the value in the ECX register is zero
initially, it will be decremented to FFFFFFFFH on the first loop instruction, causing the loop t
executed 232 times. To prevent this problem, a JECXZ instruction can be inserted at the begin
of the code block for the loop, causing a jump out the loop if the EAX register count is initiall
zero. When used with repeated string scan and compare instructions, the JECXZ instruction
determine whether the loop terminated because the count reached zero or because the scan
compare conditions were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when
16-bit address-size attribute is used. Here, the CX register is tested for zero.

30.9.3 Software Interrupts

The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out o
range) instructions allow a program to explicitly raise a specified interrupt or exception, whic
turn causes the handler routine for the interrupt or exception to be called.
30-544 Embedded Pentium® Processor Family

Instruction Set Summary

e

lers.

 the

s the
 the
e sure

),
racter
ents

 are
 Both
lement.

A
 GS
gister;
rs in
ents.
tion
ading

ster to

n
on,

t and
he
hort

 AX,
esults.

rd
The INT n instruction can raise any of the processor’s interrupts or exceptions by encoding th
vector number or the interrupt or exception in the instruction. This instruction can be used to
support software generated interrupts or to test the operation of interrupt and exception hand
The IRET instruction (see “Return From Interrupt Instruction”) allows returns from interrupt
handling routines.

The INTO instruction raises the overflow exception, if the OF flag is set. If the flag is clear,
execution continues without raising the exception. This instruction allows software to access
overflow exception handler explicitly to check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raise
“BOUND range exceeded” exception if the value is less than the lower bound or greater than
upper bound. This instruction is useful for operations such as checking an array index to mak
it falls within the range defined for the array.

30.10 String Operations

The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string
and STOS (Store string) instructions permit large data structures, such as alphanumeric cha
strings, to be moved and examined in memory. These instructions operate on individual elem
in a string, which can be a byte, word, or doubleword. The string elements to be operated on
identified with the ESI (source string element) and EDI (destination string element) registers.
of these registers contain absolute addresses (offsets into a segment) that point to a string e

By default, the ESI register addresses the segment identified with the DS segment register.
segment-override prefix allows the ESI register to be associated with the CS, SS, ES, FS, or
segment register. The EDI register addresses the segment identified with the ES segment re
no segment override is allowed for the EDI register. The use of two different segment registe
the string instructions permits operations to be performed on strings located in different segm
Or by associating the ESI register with the ES segment register, both the source and destina
strings can be located in the same segment. (This latter condition can also be achieved by lo
the DS and ES segment registers with the same segment selector and allowing the ESI regi
default to the DS register.)

The MOVS instruction moves the string element addressed by the ESI register to the locatio
addressed by the EDI register. The assembler recognizes three “short forms” of this instructi
which specify the size of the string to be moved: MOVSB (move byte string), MOVSW (move
word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string elemen
updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to t
results. Neither string element is written back to memory. The assembler recognizes three “s
forms” of the CMPS instruction: CMPSB (compare byte strings), CMPSW (compare word
strings), and CMPSD (compare doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX,
or AL register (depending on operand length) and updates the status flags according to the r
The string element and register contents are not modified. The following “short forms” of the
SCAS instruction specifies the operand length: SCASB (scan byte string), SCASW (scan wo
string), and SCASD (scan doubleword string).
Embedded Pentium® Processor Family 30-545

Instruction Set Summary

d
e
ister.

ter.
g),
 a

tion.
repeat

r

ard

 in the
F=1).

cause

tion
 are
is the

 to
orts

ster
 or
The LODS instruction loads the source string element identified by the ESI register into the EAX
register (for a doubleword string), the AX register (for a word string), or the AL register (for a byte
string). The “short forms” for this instruction are LODSB (load byte string), LODSW (load wor
string), and LODSD (load doubleword string). This instruction is usually used in a loop, wher
other instructions process each element of the string after they are loaded into the target reg

The STOS instruction stores the source string element from the EAX (doubleword string), AX
(word string), or AL (byte string) register into the memory location identified with the EDI regis
The “short forms” for this instruction are STOSB (store byte string), STOSW (store word strin
and STOSD (store doubleword string). This instruction is also normally used in a loop. Here
string is commonly loaded into the register with a LODS instruction, operated on by other
instructions, and then stored again in memory with a STOS instruction.

The I/O instructions (see “I/O Instructions”) also perform operations on strings in memory.

30.10.1 Repeating String Operations

The string instructions described in “String Operations” perform one iteration of a string opera
To operate strings longer than a doubleword, the string instructions can be combined with a
prefix (REP) to create a repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented o
decremented after each iteration of an instruction to point to the next element (byte, word, or
doubleword) in the string. String operations can thus begin at higher addresses and work tow
lower ones, or they can begin at lower addresses and work toward higher ones. The DF flag
EFLAGS register controls whether the registers are incremented (DF=0) or decremented (D
The STD and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register to
a string instruction to repeat:

• REP—Repeat while the ECX register not zero.

• REPE/REPZ—Repeat while the ECX register not zero and the ZF flag is set.

• REPNE/REPNZ—Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termina
conditions specified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes
used only with the CMPS and SCAS instructions. Also, note that a A REP STOS instruction
fastest way to initialize a large block of memory.

30.11 I/O Instructions

The IN (input from port to register), INS (input from port to string), OUT (output from register
port), and OUTS (output string to port) instructions move data between the processor’s I/O p
and either a register or memory.

The register I/O instructions (IN and OUT) move data between an I/O port and the EAX regi
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The I/O port being read
written to is specified with an immediate operand or an address in the DX register.
30-546 Embedded Pentium® Processor Family

Instruction Set Summary

the
embler

nd

e read

in
n

 or

ns

 is

e

lag is
flag is

g in

cessor

 to a
The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) between an
I/O port and memory. These instructions operate similar to the string instructions (see “String
Operations”). The ESI and EDI registers are used to specify string elements in memory and
repeat prefixes (REP) are used to repeat the instructions to implement block moves. The ass
recognizes the following alternate mnemonics for these instructions: INSB (input byte), INSW
(input word), and INSD (input doubleword), and OUTB (output byte), OUTW (output word), a
OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to b
or written to.

30.12 Enter and Leave Instructions

The ENTER and LEAVE instructions provide machine-language support for procedure calls
block-structured languages, such as C and Pascal. These instructions and the call and retur
mechanism that they support are described in detail in “Procedure Calls for Block-Structured
Languages”.

30.13 EFLAGS Instructions

The EFLAGS instructions allow the state of selected flags in the EFLAGS register to be read
modified.

30.13.1 Carry and Direction Flag Instructions

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructio
allow the CF flags in the EFLAGS register to be modified directly. They are typically used to
initialize the CF flag to a known state before an instruction that uses the flag in an operation
executed. They are also used in conjunction with the rotate-with-carry instructions (RCL and
RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in th
EFLAGS register to be modified directly. The DF flag determines the direction in which index
registers ESI and EDI are stepped when executing string processing instructions. If the DF f
clear, the index registers are incremented after each iteration of a string instruction; if the DF
set, the registers are decremented.

30.13.2 Interrupt Flag Instructions

The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the interrupt IF fla
the EFLAGS register to be modified directly. The IF flag controls the servicing of hardware-
generated interrupts (those received at the processor’s INTR pin). If the IF flag is set, the pro
services hardware interrupts; if the IF flag is clear, hardware interrupts are masked.

30.13.3 EFLAGS Transfer Instructions

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be copied
register or memory or be loaded from a register or memory.
Embedded Pentium® Processor Family 30-547

Instruction Set Summary
The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of the
EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags to bits
7, 6, 4, 2, and 0 of the AH register, respectively. The contents of the remaining bits in the register
(bits 5, 3, and 1) are undefined, and the contents of the EFLAGS register remain unchanged. The
SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register into the SF, ZF, AF, PF, and CF
flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop flags
double) instructions copy the flags in the EFLAGS register to and from the stack. The PUSHF
instruction pushes the lower word of the EFLAGS register onto the stack (see Figure 30-11). The
PUSHFD instruction pushes the entire EFLAGS register onto the stack (with the RF and VM flags
read as clear).

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 11, 10, 8, 7,
6, 4, 2, and 0 of the EFLAGS register are affected with all uses of this instruction. If the current
privilege level (CPL) of the current code segment is 0 (most privileged), the IOPL bits (bits 13 and
12) also are affected. If the I/O privilege level (IOPL) is greater than or equal to the CPL,
numerically, the IF flag (bit 9) also is affected.

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can change
the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a POPF
instruction. The restrictions for changing the IOPL bits and the IF flag that were given for the
POPF instruction also apply to the POPFD instruction.

30.13.4 Interrupt Flag Instructions

The CLI (clear interrupt flag) and STI (set interrupt flag) instructions clear and set the interrupt flag
(IF) in the EFLAGS register, respectively. Clearing the IF flag causes external interrupts to be
ignored. The ability to execute these instructions depends on the operating mode of the processor
and the current privilege level (CPL) of the program or task attempting to execute these
instructions.

30.14 segment register instructions

The processor provides a variety of instructions that address the segment registers of the processor
directly. These instructions are only used when an operating system or executive is using the
segmented or the real-address mode memory model.

Figure 30-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD instructions

PUSHFD/POPFD

PUSHF/POPF

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

30-548 Embedded Pentium® Processor Family

Instruction Set Summary

-bit
re

sfers

ns”)

 as a
eing
alues

 Here,
 the
 of the

can
e
g of

ES),
sing
egister.
 the

ns
30.14.1 Segment-Register Load and Store Instructions

The MOV instruction (introduced in “General-Purpose Data Movement Instructions”) and the
PUSH and POP instructions (introduced in “Stack Manipulation Instructions”) can transfer 16
segment selectors to and from segment registers (DS, ES, FS, GS, and SS). The transfers a
always made to or from a segment register and a general-purpose register or memory. Tran
between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far control-
transfer versions of the JMP, CALL, and RET instructions (see “Far Control Transfer Instructio
affect the CS register directly.

30.14.2 Far Control Transfer Instructions

The JMP and CALL instructions (see “Control Transfer Instructions”) both accept a far pointer
source operand to transfer program control to a segment other than the segment currently b
pointed to by the CS register. When a far call is made with the CALL instruction, the current v
of the EIP and CS registers are both pushed on the stack.

The RET instruction (see “Call and Return Instructions”) can be used to execute a far return.
program control is transferred from a code segment that contains a called procedure back to
code segment that contained the calling procedure. The RET instruction restores the values
CS and EIP registers for the calling procedure from the stack.

30.14.3 Software Interrupt Instructions

The software interrupt instructions INT, INTO, BOUND, and IRET (see “Software Interrupts”)
also call and return from interrupt and exception handler procedures that are located in a cod
segment other than the current code segment. With these instructions, however, the switchin
code segments is handled transparently from the application program.

30.14.4 Load Far Pointer Instructions

The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using
LFS (load far pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer u
SS) load a far pointer from memory into a segment register and a general-purpose general r
The segment selector part of the far pointer is loaded into the selected segment register and
offset is loaded into the selected general-purpose register.

30.15 Miscellaneous Instructions

The following instructions perform miscellaneous operations that are of interest to applicatio
programmers.
Embedded Pentium® Processor Family 30-549

Instruction Set Summary

exing
efore
on.

 a
as an
ister
ese
 into
ble).

aded

n, but

pcode
alid
30.15.1 Address Computation Instruction

The LEA (load effective address) instruction computes the effective address in memory (offset
within a segment) of a source operand and places it in a general-purpose register. This instruction
can interpret any of the Pentium Pro processor’s addressing modes and can perform any ind
or scaling that may be needed. It is especially useful for initializing the ESI or EDI registers b
the execution of string instructions or for initializing the EBX register before an XLAT instructi

30.15.2 Table Lookup Instructions

The XLAT and XLATB (table lookup) instructions replace the contents of the AL register with
byte read from a translation table in memory. The initial value in the AL register is interpreted
unsigned index into the translation table. This index is added to the contents of the EBX reg
(which contains the base address of the table) to calculate the address of the table entry. Th
instructions are used for applications such as converting character codes from one alphabet
another (for example, an ASCII code could be used to look up its EBCDIC equivalent in a ta

30.15.3 Processor Identification Instruction

The CPUID (processor identification) instruction provides information about the processor on
which the instruction is executed. To obtain processor information, a value of from 0 to 2 is lo
in the EAX register and then the CPUID instruction is executed. The resulting processor
information is placed in the EAX, EBX, ECX, and EDX registers. Table 30-5 shows the
information that is provided depending on the value initially entered in the EAX register. See
“Processor Identification”, for detailed information on the output of the CPUID instruction.

30.15.4 No-Operation and Undefined Instructions

The NOP (no operation) instruction increments the EIP register to point at the next instructio
affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel reserves the o
for this instruction for this function. The instruction is provided to allow software to test an inv
opcode exception handler.

Table 30-5. Information Provided by the CPUID Instruction

Initial EAX Value Information Provided about the Processor

0
Maximum CPUID input value.

Vendor identification string (“GenuineIntel”).

1
Version information (family ID, model ID, and stepping ID).

Feature information (identifies the feature set for the processor model).

2 Cache information (about the processor’s internal cache memory).
30-550 Embedded Pentium® Processor Family

	Instruction Set Summary 30
	30.1 New Intel Architecture Instructions
	30.1.1 New Instructions Introduced with the MMX™ Technology
	30.1.2 New Instructions in the Pentium® Pro Processor
	30.1.3 New Instructions in the Pentium® Processor
	30.1.4 New Instructions in the Intel486™ Processor

	30.2 Instruction Set List
	30.2.1 Integer Instructions
	30.2.1.1 Data Transfer Instructions
	30.2.1.2 Binary Arithmetic Instructions
	30.2.1.3 Decimal Arithmetic
	30.2.1.4 Logic Instructions
	30.2.1.5 Shift and Rotate Instructions
	30.2.1.6 Bit and Byte Instructions
	30.2.1.7 Control Transfer Instructions
	30.2.1.8 String Instructions
	30.2.1.9 Flag Control Instructions
	30.2.1.10 Segment Register Instructions
	30.2.1.11 Miscellaneous Instructions

	30.2.2 MMX™ Technology Instructions
	30.2.2.1 MMX™ Data Transfer Instructions
	30.2.2.2 MMX™ Conversion Instructions
	30.2.2.3 MMX™ Packed Arithmetic Instructions
	30.2.2.4 MMX™ Comparison Instructions
	30.2.2.5 MMX™ Logic Instructions
	30.2.2.6 MMX™ Shift and Rotate Instructions
	30.2.2.7 MMX™ State Management

	30.2.3 Floating-Point Instructions
	30.2.3.1 Data Transfer
	30.2.3.2 Basic Arithmetic
	30.2.3.3 Comparison
	30.2.3.4 Transcendental
	30.2.3.5 Load Constants
	30.2.3.6 FPU Control

	30.2.4 System Instructions

	30.3 Data Movement Instructions
	30.3.1 General-Purpose Data Movement Instructions
	30.3.1.1 Move Instruction
	30.3.1.2 Conditional Move Instructions
	Table 30�1. Move Instruction Operations

	30.3.1.3 Exchange Instructions
	Table 30�2. Conditional Move Instructions

	30.3.2 Stack Manipulation Instructions
	Figure 30�1. Operation of the PUSH Instruction
	Figure 30�2. Operation of the PUSHA Instruction
	Figure 30�3. Operation of the POP Instruction
	Figure 30�4. Operation of the POPA Instruction
	30.3.2.1 Type Conversion Instructions
	Figure 30�5. Sign Extension

	30.3.2.2 Simple Conversion
	30.3.2.3 Move and Convert

	30.4 Binary Arithmetic Instructions
	30.4.1 Addition and Subtraction Instructions
	30.4.2 Increment and Decrement Instructions
	30.4.3 Comparison and Sign Change Instruction
	30.4.4 Multiplication and Divide Instructions

	30.5 Decimal Arithmetic Instructions
	30.5.1 Packed BCD Adjustment Instructions
	30.5.2 Unpacked BCD Adjustment Instructions

	30.6 Logical Instructions
	30.7 Shift and Rotate Instructions
	30.7.1 Shift Instructions
	Figure 30�6. SHL/SAL Instruction Operation
	Figure 30�7. SHR Instruction Operation
	Figure 30�8. SAR Instruction Operation

	30.7.2 Double-Shift Instructions
	Figure 30�9. SHLD and SHRD Instruction Operations

	30.7.3 Rotate Instructions
	Figure 30�10. ROL, ROR, RCL, and RCR Instruction Operations

	30.8 Bit And Byte Instructions
	30.8.1 Bit Test and Modify Instructions
	Table 30�3. Bit Test and Modify Instructions

	30.8.2 Bit Scan Instructions
	30.8.3 Byte Set On Condition Instructions
	30.8.4 Test Instruction

	30.9 Control Transfer Instructions
	30.9.1 Unconditional Transfer Instructions
	30.9.1.1 Jump Instruction
	30.9.1.2 Call and Return Instructions
	30.9.1.3 Return From Interrupt Instruction

	30.9.2 Conditional Transfer Instructions
	30.9.2.1 Conditional Jump Instructions
	Table 30�4. Conditional Jump Instructions

	30.9.2.2 Loop Instructions
	30.9.2.3 Jump If Zero Instructions

	30.9.3 Software Interrupts

	30.10 String Operations
	30.10.1 Repeating String Operations

	30.11 I/O Instructions
	30.12 Enter and Leave Instructions
	30.13 EFLAGS Instructions
	30.13.1 Carry and Direction Flag Instructions
	30.13.2 Interrupt Flag Instructions
	30.13.3 EFLAGS Transfer Instructions
	Figure 30�11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD instructions

	30.13.4 Interrupt Flag Instructions

	30.14 segment register instructions
	30.14.1 Segment-Register Load and Store Instructions
	30.14.2 Far Control Transfer Instructions
	30.14.3 Software Interrupt Instructions
	30.14.4 Load Far Pointer Instructions

	30.15 Miscellaneous Instructions
	30.15.1 Address Computation Instruction
	30.15.2 Table Lookup Instructions
	30.15.3 Processor Identification Instruction
	Table 30�5. Information Provided by the CPUID Instruction

	30.15.4 No-Operation and Undefined Instructions

